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Abstract

Microarrays have proven to be a useful and high-throughput method to provide targeted DNA
sequence information for up to many thousands of specific genetic regions ifedeshgA
microarray consists of multiple DNA oligonucleotide probes that, under high stringenc
conditions, hybridize only to specific complementary nucleic acid sequeacgst$). A
fluorescent signal indicates the presence and, in many cases, the abundenetiofegions of
interest. In this chapter we will look at how microarrays are used in matetmlogy, especially
with the recent increase in microbial community DNA sequence data. @iuparinterest to
microbial ecologists, phylogenetic microarrays are used for the @afyshylotypes in a
community and functional gene arrays are used for the analysis of functionglajehdsy
inference, phylotypes in environmental samples. A phylogenetic miayodwat has been
developed by the Andersen laboratory, the PhyloChip, will be discussed as an edfaanple
microarray that targets the known diversity within the 16S rRNA gene to detemarabial
community composition. Using multiple, confirmatory probes to increase the coridénc
detection and a mismatch probe for every perfect match probe to minimizéetiteétross-
hybridization by non-target regions, the PhyloChip is able to simultaneouslifyicent of
thousands of taxa present in an environmental sample. The PhyloChip is shown to reteral grea
diversity within a community than rRNA gene sequencing due to the placement of the enti
gene product on the microarray compared with the analysis of up to thousands of individual
molecules by traditional sequencing methods. A functional gene array that hasusdepete

by the Zhou laboratory, the GeoChip, will be discussed as an example of a myctioairra



dynamically identifies functional activities of multiple memberdwata community. The recent
version of GeoChip contains more than 24,000 50mer oligonucleotide probes and covers more
than 10,000 gene sequences in 150 gene categories involved in carbon, nitrogen, sulfur, and
phosphorus cycling, metal resistance and reduction, and organic contaminanttaegrada
GeoChip can be used as a generic tool for microbial community analysis, and alsatotkahi
community structure to ecosystem functioning. Examples of the application of etk iar

different environmental samples will be described in the two subsequent sections.

1. INTRODUCTION

1.1 The use of microarray technologies for microbial ecology studies

Microarrays have become an increasingly popular method in the microbial steltamplkit for
analyzing microbial communities. This trend has also been observed in otherrascipli
resulting in an increase in PubMed entries mentioning microarrays from 20 in 1998 to over
34,300 by November 2008 (Loring, 2006). Within the scope of this chapter, microarrays can be
simply thought of as a high throughput way to detect the presence and concentratidipts mul
nucleotide sequences within an environmental sample. Sequence complemerttesiy be
single stranded nucleic acid molecules, one of which is typically immedibn the microarray,
leads to the hybridization of specific target sequences from a sampladvdrd of large
genomic sequencing centers and the continuing decrease in sequencing costdhavan
explosion of DNA sequence data, including data from environmental microorganismssashi
created an even greater need for high throughput methods such as microariaes éffiment

use of the expanding sequence databases.



In this chapter we will discuss two specific examples of microarraystbdeing used to
answer questions of interest to microbial ecologists. The first examgégstdhe 16S rRNA
gene of bacteria and archaea (PhyloChip) to identify specific memhkns avcomplex
microbial community. We will discuss how this microarray has been used to ehnaette
microbial diversity of selected environments. The second example targets furmtional
gene markers to study functional gene diversity and activities of mg@anisms in the
environment. We will demonstrate how functional gene arrays (GeoChips) have ég¢n us
analyze microbial communities, and provide linkages of microbial genes/popsl&i

ecosystem processes and functions.

1.2 DNA microarrays

Based on the target of molecular markers, two types of mamoarrays have been used for
microbial community analysis. The first are phylogeneticroarrays that target phylogenetic
genes, such as the 16S rRNA gene gym& gene. Phylogenetic microarrays allow us to identify
microorganisms and their phylogenetic relationships in a commahititerest. The second are
functional gene arrays that target key functional gene matkatsare indicative of a specific
physiological or metabolic process, such K and nirS encoding nitrite reductases, key
enzymesof the denitrification process (Braker et al., 2000), ansbA encoding ammonia
monooxygenase, a key enzyme for ammonia oxidization (Rotthauale 4997). Functional
gene arrays allow us to study functional gene diversity anvtast of microbial communities.
In this section, both microarrays are introduced below.

1.2.1 Phylogenetic microarray

1.2.1.1 Analysis of microbial communitieswith 16SrRNA targeted microarrays



Molecular methods for detecting and monitoring bacteria and achadinely rely upon
classifying heterogeneous 16S rRNA molecules, either a8 &MNas gene fragments encoding
RNA that are amplified by universal PCR primers. The genmaethod of sampling sequence
types has been to clone and sequence PCR products derived frorbidinesekers. However,
the number of clones required to adequately catalogue the majbrigka in a sample is
typically unwieldy assuming a log-normal distribution (Curtis &tmhn, 2005). For example, in
a typical soil sample with one billion bacterial cells and 10,0G@remt species, one would need
to sample at least one million sequences (Gans et al., 2005). d\gnsmg has provided a
alternative to cloning by producing a greater sample siadater cost (Huse et al., 2008). But,
as they are currently practiced, neither method is able tercemvironmental microbial
populations spanning multiple orders of magnitude within a single sampkequencing
community members is an essential but inefficient process, wherbiomarkers representing
the most abundant phylotypes or species mask less abundant but potentiallyasigmiémbers.
As an alternative approach to biomarker sampling by cloning, hghtidn of target
sequences to an array of probes, permits much greater numbadeailes to be sampled
compared with the hundreds or thousands that usually comprise an envirdroloeetdibrary.
Because of the small, oftentimes single nucleotide differew@éa the probed regions of the
biomarker genes for the differentiation of microbial taxa, & heyel of sequence specificity is
desired. Oligonucleotide DNA microarrays often consist of lamgmbers of individual short,
15- to 30-nucleotide capture probes to offer the highest level of sjtgdiér the identification
of specific target sequences, particularly in a backgroundsél related sequences. As stated
earlier in Chapter 1, the 16S rRNA gene sequence provides a nundokaotages in its use as

a biomarker for the identification of individual bacterial componéentsomplex environmental



samples. Rather than translating its genetic code into prd®\A acts directly in the protein
assembly machinery as a functional molecule. Due to structuralraiots of this molecule,
specific regions throughout the 16S rRNA gene have a highly conseunebebtide sequence
while non-structural segments may have a high degree of \ayigWoese et al., 1975).
Probing the regions of high variability can be used to identify migeoosms at the species
level while regions of less variability are used for group-lédehtification. With only one to a
few nucleotides of sequence variability, at best, within &%y to 30-bp region that may be
targeted by a probe for discrimination between related micrapeties, it is imperative to
maximize the probe-target sequence specificity in the microarrayrsyste

One example of a microarray that has been successfully tasdscriminate bacterial
species uses a hierarchical set of oligonucleotide probes & taiggnisms at different levels of
taxonomic specificity on a matrix of acrylamide gel pads oraasgslide (Liu et al., 2001).
Developed by Liu and Stahl, this method uses the 3-dimensional nature of thergelaraiiow
solution-based probe kinetics with a non-equilibrium dissociation appfoadhigh levels of
discrimination between target and non-target 16S rRNA gene sequehicgsified 16S rRNA
gene sequences are placed on the gel-pad microarray and allovgtrigize under low-
stringency conditions. Increasing the hybridization tempergituceeased stringency) results in
the preferential dissociation of non-homologous probe-target complexessinibtaneously
generated melting curves for the perfect match (PM) and atcén{MM) duplexes are used to
define the temperature at which 50% of the starting duplex remaiast (dissociation
temperature, {) It was found that, for the most part, a probe-target duplexomghMM has a
greater than two-fold level of discrimination from a PM duplexTgtthus allowing greater

specificity of detection by differentiating between PM and MM complexes.



By contrast, other 16S rRNA gene-targeted or phylogeneticoam@ys use short
oligonucleotide probes bound to a two-dimensional surface (e.g., glassypecific sequences
located at defined two dimensional coordinates. Many studies havessfudly used these 16S
rRNA gene-targeted microarrays to differentiate bacteria specific groups, such as
Enterococcus (Lehner et al., 2005 Cyanobacteria (Castiglioni et al., 2004), nitrifying bacteria
(Kelly et al., 2005) and fish pathogens (Warsen et al.,, 2004) and foritgtie@ttuning of
sampling protocols to enhance detection of desired taxonomic groups.
1.2.1.2 A comprehensive view of microbial diversity
Instead of targeting specific groups or classes of organisms, another sgdteggrform a
comprehensive screen for all known bacterial or archaeal taxa on a singlarnaigr This relies,
initially, on obtaining all known 16S rRNA gene sequences from the major sequence
repositories, including Lawrence Berkeley National Laboratory’ ®@yenes
(greengenes.Ibl.gov) (DeSantis et al., 2006b), Michigan State Universitgsmal database
project (RDP; rdp.cme.msu.edu) (Cole et al., 2005), the Max Planck Institute fioeMar
Microbiology’s Silva database (http://www.arb-silva.de/), and the Natiosttute of Health’s
NCBI (www.ncbi.nim.nih.gov). There are currently over 700,000 individual sequences housed
in these repositories but due to the lack of peer-review before inputting the sedtences
individual submitters there are a number of quality control issues that may not kave be
addressed, producing inaccurate data. To reduce this problem, a seriesaftfittez sequence
data may be employed to reduce the possibility that an assay is createwbfexisting target.
The Greengenes database of 16S rRNA gene sequences compiles informatiohdrom ot
databases to produce a set of sequences that are compatible with a comprehgogmeapic

microarray design. Among the issues addressed by this database tardéjdzed taxonomic



placement of individual 16S rRNA gene sequences, (ii) removal of chimericweguii)
removal of poor quality (ambiguous) sequences, and (iv) distribution of data in a consistentl
aligned sequence format.

Because the discovery rate of 16S sequence records from uncultured organisms now
exceeds that from their cultured counterparts, taxonomic placement of sexjlagisdeehind. In
fact, over one-third of full-length 16S records in GenBank are presented without tagonomi
nomenclature and are simply annotated as “environmental samples” or “Uredassn
contrast, records in the Greengenes dataset are annotated with taxonomy prpfigeed b
independent curators: NCBI, RDP, based on Bergey’s Manual?; ((Cole et al., 2005gngolfg
Ludwig (Ludwig et al., 2004), Phil Hugenholtz (Hugenholtz, 2002) and Norm Pace (Pace, 1997),
collectively covering over 95% of the database. Incongruent taxonomic nomenelasiise
among curators even at the phylum-level, yet each is tracked to promotevasaress of
several estimations of phylogenetic descent allowing a balanced appraeaatetand
operational taxon unit (OTU) nomenclature when labeling probe specificity.

Since 16S rRNA genes from environmental DNA are usually PCR amplified, it has bee
suspected that many chimeric sequences are present in the public repositéreR-ganerated
chimeric sequence usually comprises two phylogenetically distinattgseguences and occurs
when a prematurely terminated amplicon re-anneals to a foreign DNA strandcapees to
completion in the following PCR cycles. The point at which the chimeric sequenagesHaom
reflecting one parent to the next (break point) can be misconstrued as novel biooraaker f
unique organism (Figure). The trend has been observed in 3% of the sequences from
uncultured organisms and 0.2% of sequences annotated as pure cultures (Ashal{2a0s;

DeSantis et al., 2006b). Very recently, large 16S rRNA clone libraries have Ipeesitetd to
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Figure 1. An example of a chimeric artifact genedleduring PCR . . .
amplification of a mixed population using broad«ifieity 16S Public DNA data repositories rarely

rRNA gene primers. Partial amplicons may form hgbnvith
dissimilar templates because conserved regionsa@xsitions

medial to the PCR primer targets. The partial éroplcan be guality-check the primary data

extended using the dissimilar 16S gene as a tee:
(chromatograms) of the sequences they distribute. Unfortunately, the majdi@$ oRNA gene
sequences in the public databases are decoded from single coverage sequetsctygically
yielding “non-ambiguous” yet non-reproducible base calls in 2 of 400 chromiatqgaks
(0.5%) even under ideal conditions where data is collected in small batches bgreoque
research groups (Fields et al., 2006). The problem is magnified in high-throutjbst e
Assuming chromatograms or quality scores are not obtainable for the sequestteonoll
various poor quality records can still be identified. Obvious sequencing reastivad for the
majority of the gene or a just a region can be easily discarded or trimnestidrathe
distribution of ambiguous base-calls (non-“ACGT” characters). Interpoktennatograms
should also have zero or few long homopolymeric regions (i.e. eight or more sequisniaésa

reported) since these have rarely been confirmed in isolates and badewabltream of the

homopolymer commonly have increased error rates. Furthermore, an emphasis sphtadede



on reads covering a large portion of the gene of interest so that multiple probes c&kedbe pic
from throughout the domains. Greengenes enables de-selection of records withsaahlade
percentage of ambiguous calls, one or more homopolymeric runs, and low gene c(rerdge

reads).

1.2.2 Functional genearrays

As described in Chapter X, one gram of soil contains more than 5000ongianisms, and a
majority of them (>99%) have not yet been cultivated (Whitmaal.et1998), which presents
enormous difficulties for microbiologists to study microbial compasjtstructure, function, and
dynamics in natural and/or contaminated environments. Using functgera markers to
investigate such microbial communities is therefore necessamgdSet al. (Schadt et al., 2004)
listed some of those functional genes currently used in environnstathés that allow us to
study functional gene diversity and activities of microorganisnthe environment. Currently,
conventional molecular methods, such as PCR-based cloningn aal hybridization are very
useful in providing snap shots for microbial diversity, structureé function, but they fail to
provide a full picture of microbial activities and dynamics imapid and high-through-put
fashion. Although microarray technology has been used successfuligalyze global gene
expression in pure culture studies, adapting microarray technologyséolin environmental
studies presents numerous challenges in terms of probe desigoyénage of gene sequences,
specificity, sensitivity and quantitative capability. To overcomehsobstacles for studying
microbial communities in natural settings, a particular typenafroarrays, called functional
gene arrays (FGASs), has been developed and used. This typeradmay contains probes from

genes involved in key microbially-mediated biogeochemical procesgels,as C, N, P, and S



cycling and utilization, organic contaminant degradation, and metal redllentd resistance.
FGAs that mainly target geochemical processes are also called @ed@Baiet al., 2007). FGAs
are powerful tools to address some fundamental questions in micrebizogy,
biogeochemistry, and environmental biology, such as: (i) What amadtgenes/microorganisms
are in a microbial community? (ii) What biological or geocloaiprocesses dominate in a
microbial community? (iii) What are the dynamics of actifdy a given gene or process? (iv)
How does microbial community structure link to its function? (v) Wdnat the relationships
between functional gene activities/abundance and geochemical pasdmete

For almost one decade, microbiologists, especially microbiabgsts have tried to
answer a central question whether microarray-based FGA techemlogn provide specific,
sensitive and quantitative detection of microbial populations and aggiwitithin the context of
environmental applications. The technology has evolved several gensrati terms of
gene/probe coverage and related computational techniques for fuhofjena sequence
retrieval, probe selection, data analysis, and information stofhgefirst generation of FGAs
was prototype microarrays with a focus on proof of the concept. Bon@®, such a prototype
microarraywas constructed with 89 PCR-amplicon probes targeting functional oodsed in
nitrogen cycling using pure culturasd laboratory clones (Tiquia et al., 2004; Wu et al., 2001).
It presents a great challenge to obtain PCR amplicon probesafinersity of environmental
clones and bacterial strains from various sources, so construatomg@ehensive FGA is very
difficult. Therefore, oligonucleotide-based FGAs have become more pajugato their high
specificity, ease of construction, and low cost. Oligonucleotidéds-@re fabricated with
synthetic oligonucleotide probes with 50mer {Rhee, 2004 #436) or 70mer (Tard@ideaburg

et al., 2003) in length, and they can be spotted on glass slides éRaeg2004; Taroncher-
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Oldenburg et al., 2003; Tiquia et al., 2004; Wu et al., 2001), or nylon meml{&iresrd et al.,
2004). Different FGAs have been systematically evaluated mstesf their sensitivity,
specificity, and quantitation, and the results demonstrate thatt€€wology holds promise for
the analysis of microbial communities. In addition, an FGA magetaboth functional and
phylogenetic markers. For exampl@y et al. (Loy et al., 2004onstructed an array containing
both phylogenetic (16S rRNA gene) and functioristA4/B) markers and those example FGAs
were classified as GeoChip 1.0. The current version, GeoChip 2.@dasiesigned and used
for a comprehensive analysis of microbial community structumegtion, and dynamics in a
natural or contaminated environment. The coverage of gene seqpeoioes/ has greatly
increased from hundreds to tens of thousands, and related computatibnajues, such as
sequence retrieval, probe design, and data analysis have bedy igipaetved. GeoChip 2.0
contains 24,243 oligonucleotide (50mer) probes and covers > 10,000 genes in >150 functional
groups involved in nitrogen, carbon, sulfur and phosphorus cycling, metatticedwand
resistance, and organic contaminant degraddfiable 1; (He et al., 2007)Yhis array uses
experimentally established probe design criteria (He et al., 200&8thich et al., 2006) and a
new computational software tool, CommOligo (Li et al., 2005) for oligemticle probe
selection. In addition, an analysis of sub-nanogram quantitiescodloml community DNA has
been achieved by whole-community genome amplification (Wu et al., 206&).approach
made it possible to analyze microbial communities with low biom@ke next generation,
GeoChip 3.0, is currently being developed. It is expected to be more edlmmpive, covering
>45,000 gene variants (sequences) in > 290 gene categories. Manfeateves will be

implemented.
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1.3 General Experimental Procedures

1.3.1 Sample preparation

For more detailed description on how microarrays are used to identify and quaedifycs
genetic sequences for biological research in general pleas¢ordierexcellent recent reviews
by R. B. Stoughton and J. W. Edwards (Allison et al., 2007; Stoughton, 2005). One of the main
factors distinguishing the use of microarrays within microbial ecology &ter areas of study
is that the genetic sequences are derived from multiple organisms in whaslly a complex
microbial community. Because the constituents of a microbial community ltyfeae very
different types of cell walls it is important to find a target isolation andigation method that

is suitable for a wide range of conditions. Equally important for microbial @g@ipplications

is to remove environmental inhibitors of nucleic acid amplification. An exampleodiustr
nucleic acid extraction and purification protocol is the method established by Zalo(Ztou

et al., 1996) or using other approaches described in Chapter X. The method used normally
requires modification depending on the experimental goals and environmental sgapéeith
as soils, sediments, and groundwater (Hurt et al., 2001). Many DNA extraction archponif
kits are commercially available, and these were recently compareais 6f DNA extraction
efficiency from different types of samples (Klerks et al., 2006). Purified B&mples should
have Agso/Azg0> 1.80, and Aso/A230>1.70. Since a typical hybridization for GeoChip analysis
requires 2-5 pg purified DNA, samples with lower than 2 pg require amplicasing the
currently developed WCGA (whole community genome amplification) method (W 2086).
Obtaining purified mRNA from environmental samples is an eveatgrehallenge than DNA,
especially for low-abundance mRNAs. This is still often destrafthce mRNA is an ideal

indictor of microbial activity. Total RNA can be isolated and pedfusing the approach
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described by Hurt et al. (Hurt et al.,, 2001). This method cantéesdldNA and RNA
simultaneously with the same sample. Recently, a new gelaghotesis method to isolate
community RNAwas developed (McGrath et al., 2008). Normally, the ratios -gd Apso and
Azs/Azszo for a purified RNA are expected to be >1.90, and >1.70, respectivelyanklysis of a
microbial community, a normal hybridization requires 10-20 pg puriR®th, samples with
lower than 5 pg will again require amplification, as may beoperéd with the novel whole
community RNA amplification approach (WCRA) (Gao et al., 2007) tainkcDNA. With such
a method, 1,200- to 1,800-fold amplification can be obtained with 10 to 100 R§jlAfas

templates (Gao et al., 2007).

1.3.2 Microarray fabrication

There are several different styles of microarrays used formal community analysis. The
Affymetrix (Santa Clara, CA) platform DNA arrays thaeaised on phylogenetic arrays such as
the PhyloChip have the short oligonucleotide probes (~25-mer) syrtieliectly on the glass
surface by a photolithography method at an approximate density of 10,086ulasl pejum?2
(Chee et al., 1996). Spotted DNA arrays use oligonucleotides that are sythedizidually at

a predefined concentration and are applied to a chemically acivgtass surface.
Oligonucleotide length can range from a few nucleotides to hundrdasses in length but are

typically in the 50-mer range for functional arrays such as the GeoChip.

1.3.3 Target labeling

The nucleic acid targets are labeled so that a laser scam®esl to a specific wavelength can

measure the number of fluorescent molecules that hybridized tocHicsfiENA probe. For
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photolithography arrays such as Affymetrix, the nucleic acid targe fragmented to between
50 and 100-bp size and a biotinylated nucleotide is added to the endfrafgiinent by terminal
DNA transferase. At a later stage, the biotinylated fragsethat hybridize to the
oligonucleotide probes are used as a substrate for the addition oplenyhycoerythrin
fluorophores by a sandwich antibody (Streptavidin) method.

For spotted arrays such as the GeoChip, the purified communityx Dhh be
fluorescently labeled by random priming using the Klenow fragnoé DNA polymerase as
described previously (Wu et al., 2006) and more than one fluorescent wamebe used (e.g.
controls could be labeled with Cy3, and experimental samples labalfledCybs for direct
comparison by hybridization to a single microarray). Total commRINA (e.g. 5-10 pg) can
be labeled using Cy5 or Cy3 with Supersciiphi/Ill RNase H reverse transcriptase (Invitrogen
Life Technologies, CA) as described by He et al. (He.e28D5a). The labeled cDNA target is

then purified and concentrated.

1.3.4 Hybridization

Microarray hybridizations are then carried out under stringent ¢onslidescribed previously
(Rhee et al., 2004; Wu et al., 2006). The temperature can be lowenredlite stringency and
allow the detection of more divergent sequences. Robotic hybrahzatid stringency wash
stations can be used to give more consistent results. The plagaiphy arrays use an
automated Affymetrix hybridization and fluidics station for athshes as well as fluorescent
staining with antibody and phycoerythrin. Spotted arrays can useBGAN HS4800 (Tecan
U.S., Inc., Durham, NC) to replace manual hybridization, which alévlybridizations to be

completed in 6 hours.
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1.3.5 Signal quantification and analysis

After hybridization the arrays are scanned using a mi@agacanner (e.g. GeneChip Scanner
3000, Affymetrix, Santa Clara, CA for PhyloChip, or ProScan Arkaerkin Elmer, Boston, MA
for GeoChip) equipped with lasers at a resolution of 10 um or fiiler scanned imagbsplays
are saved and analyzed gyantifying the pixel density (intensity) of each spot usimgge
guantification software (e.g. GeneChip Microarray AnalysiseSuiersion 5.1 Affymetrix, Santa

Clara, CA for PhyloChip, or ImaGene 6.0, Biodiscovery Inc. Los Angelesp€&doChip).

2. PhyloChip, A PHYLOGENETIC MICROARRAY

2.1 PhyloChip Design.

The key considerations that must be taken into account in designing a 16S rRNA gene-based
microarray to identify individual organisms in a complex environmental mixteré.anatural
sequence diversity and 2.) potential cross-hybridization. Sequence diveesitissue as we
sample new and distinctive environments such as bioaerosols. There may be many
undocumented organisms with 16S rRNA gene sequences that are similar, but natl ibettec
sequences that were used for array design. Microarrays based upon single sgop@fice
hybridizations (single probes) per OTU may be ineffective in detealicig esnvironmental
sequences with one or several polymorphisms. To overcome this obstacle, anifgtyiet
photolithography chip was designed with a minimum of 11 different, short oligonucleotide
probes for each taxonomic grouping, allowing for the failure of one or more probes. Also
important is non-specific cross hybridization, especially when an abundant N8S)dRe

shares sufficient sequence similarity to non-targeted probes, such th& buvdatectable

15



signal is obtained. It has been found that the perfect match-mismatch (PMpidibé pair
approach effectively minimizes the influence of cross-hybridization. Wids#d on expression
arrays as a control for non-specific binding (Chee et al., 1996), the cardiebtide is replaced
with any of the three non-matching bases so that the increased hybridizarsitynsignal of
the PM over the paired MM indicates a sequence-specific, positive hylodiz&y requiring
multiple PM-MM probe-pairs to have a positive interaction, we substantiallyaeiserthe chance
that the hybridization signal is due to a predicted target sequence.

Once a reference set of valid genes is established it is importanate amaultiple
sequence alignment (MSA). The MSA allows confident comparisons between squhen
selecting probes. For instance, when a candidate probe does not complement a gaguence
practical to determine if sequence data is available at the expected praios pdsitered,
aligned 16S rRNA sequence records can be exported directly from Greengenegheinc
Greengenes database consistently spreads the gene into an alignment of Ze82-slamwidth,
then private, in-house sequences can be formatted into the same MSA using theN"A®Et(
Alignment Space Termination) web tool (DeSantis et al., 2006a). Other stsagacst for
compiling MSAs from various sequence sources and the choice is governed lag thietlse
project. In general, alignment can be done with clustalw (Thompson et al., @084)dil
MSAs (<500 sequences), MUSCLE (Edgar, 2004) for mid-size MSAs, (500-10,000 sequences)

or NAST (DeSantis et al., 2006a) for large MSAs (>10,000 genes).

2.2 Simultaneous clustering of genes and probes.

The objective of the probe selection strategy for comprehensive prokaryeotificgdéon is to

obtain an effective set of probes capable of correctly categorizinglmmplicons into their
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proper operational taxonomic unit (OTU) designations. Each OTU is formed from sexjuence
which have common oligomer targets, considering only those targets that meeCthaéhing
temperature, and secondary structure constraints of the design. Whereamglimplemented

to infer phylogeny may utilize similarities along the entire geregtorg OTUs relies on finding
shared attributes that can be assayed. A supervised clustering procedertwsiich consists
first of generating numerous candidate OTUs by unsupervised hierarchicatiotysising pair-
wise gene distances measured by megaBLAST (Zhang et al., 2000) or counts of ugeise ta
Then, each candidate OTU is evaluated to determine the count of targets which are
simultaneously prevalent across the genes of the candidate OTU and alsbl&ncipa
hybridization to genes outside the OTU.

In designing the G2 PhyloChip, probes presumed to have the capacity to correctly
hybridize were those unique 25-mers that also contain a central 17-mer cloinghany
sequences outside the OTU (Urakawa et al., 2002). Thus, probes that were unique to an OTU
solely due to a distinctive base in one of the outer four bases were avoided. For each OTU
harvested from the hierarchical trees, a set of 11 or more specific 25-nodressfjprvas sought.
Three classes of probe sets resulted from the clustering procedure sditiegd,741 OTUs,
each containing an average of 3% sequence divergence, represented all 12atddrbacterial
and archaeal orders. In most cases, as expected, the OTUs contained séatenees
previously identified as related using the phylogenic tree approachea.nt&ority of the
OTUs represented on the PhyloChip (5,737; 65%), probes were designed from regioes of ge
sequences that have been identified only within a given taxon. For 1,198 taxa (14%), no probe-
level sequence could be identified that was not shared with other groups of 16S niRNA ge

sequences, although the gene sequence as a whole was distinctive. Faxtmesrit
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groupings, an average of 24 probes (but no less than 11 probes) was designed to a@embinati
of regions on the 16S rRNA gene that taken together as a whole did not exist in argxather t
For the remaining 1,806 taxa (21%), a set of probes were selected to minimize theafumbe
putative cross-reactive taxa. Although more than half of the probes in this group have
hybridization potential to one outside sequence, this sequence was typically from a
phylogenetically similar taxon. For all three probe set classesgtamtage of the hybridization
approach used was that multiple OTUs could be identified simultaneously byngugatue

regions or combinations or regions from genes.

2.3 Analyzing PhyloChip data

The G2 PhyloChip consists of 506,944 probe features, arranged as a grid of 712 rows and
columns. Of these features, 297,851 are oligonucleotide PM or MM probes with exact dr inexac
complementarity, respectively, to 16S rRNA genes. The remaining prabaseat for image
orientation, normalization controls, or for pathogen-specific signature amplicestidetusing
additional targeted regions of the chromosome (Wilson et al., 2002). Each high-density 16S
rRNA gene microarray is designed with additional probes that: 1) target ampdicons
prokaryotic metabolic genes spiked into the 16S rRNA gene amplicon mix in defined gsiantitie
just prior to fragmentation and 2) are complimentary to pre-labeled oligondeleatded into

the hybridization mix. The first control collectively tests the targegrfrentation, labeling by
biotinylation, array hybridization, and staining/scanning efficiencysti allows the overall
fluorescent intensity to be normalized across all the arrays in an experiitee second control

directly assays the hybridization, staining and scanning.
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Complementary targets to the probe sequences hybridize to the array andéhiores
signals are captured as pixel images using standard Affymetrix seft@aneChip Microarray
Analysis Suite, version 5.1) that reduces the data to an individual signal value forazechmt
is typically exported as a human readable “CEL” file. Background probes at#iétkefrom the
CEL file as those producing intensities in the lowest 2% of all intensities.vEnage intensity
of the background probes is subtracted from the fluorescence intensity of all probesiséhe
value (N) is the variation in pixel intensity signals observed by the scasiiereads the array
surface. The standard deviation of the pixel intensities within each of theiettbaickground
probe intensities is divided by the square root of the number of pixels comprisingatbed.fe
The average of the resulting quotients is used for N in the calculations desctdved be
Probe pairs scored as positive are those that meet two criteria: (i) thedkmre intensity from
the perfectly matched probe (PM) is at least 1.3 times greater than théyrftens the
mismatched control (MM), and (ii) the difference in intensity, PM minus MM, lisaat 130
times greater than the squared noise value (>£B0TKe positive fraction (PosFrac) is
calculated for each probe set as the number of positive probe pairs divided by thendet of
probe pairs in a probe set. An OTU is considered “present” when its PosFrac for the
corresponding probe set is >0.92 (based on empirical data from clone librageshaly
Replicate arrays can be used collectively in determining the presenah@ €d by requiring
each to exceed a PosFrac threshold. Present calls are propagated upwartish@taxgnomic
hierarchy by considering any node (sub-family, family, order, etc'pr@esent” if at least one of

its subordinate OTUs was present.
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Hybridization intensity is the measure of

OTU abundance and is calculated in

arbitrary units for each probe set as the

trimmed average (maximum and minimum

values removed before averaging) of the PM

minus MM intensity differences across the 239 00 02 04 05 08 10

probe pairs in a given probe set. All Water p
intensities <1 are shifted to 1 to avoid errofs “ P / 06
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Figure 2. Comparison of cloning and PhyloChip &ar

in detecting diverse 16S rRNA dene analysis of air, soil and water samples. Left pahelws
9 9 numbers of bacterial sub-families detected by aaray

. cloning, array only, cloning only and novel sequesnnot
sequence types Compared to clonlng—and- detectable by the array. Right panel shows subkami
accumulation curves obtained by serial clone olagmmns.

. be di | d The maximum diversity scenario where every clomepdad
sequencing can be airectly compare represents a new sub-family is indicated by gnes liith

constant slope = 1.

(DeSantis et al., 2007). Using three

environmental samples: urban aerosol, subsurface soil and subsurface water, J88deCiR
were classified using both methods. Approximately 8% of the clones could notee pit a
known sub-family and were considered novel. The microarray results confirmedjtréynof
clone-detected sub-families and additionally demonstrated gregwécamdiversity (Figure 2,
left) extending into phyla not observed by the cloning method. Sequences within the phyl
Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified

with specific primers and subsequent amplicon sequencing. Communities domintged by
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sub-families are most likely to errantly appear well sampled (Seemadation curve for water,
Fig 2, Right) by the clone library. The PhyloChip enables observation of the retendda
populations since the entire mass of PCR products-{+iflecules) are sampled as opposed to
a mere hundreds to thousands when cloning. In general, although the microarrayablanneli
identifying novel taxa, it reveals greater diversity in environmentapsnthan sequencing a
typically sized (300-700) clone library. Deeper sequencing of up to several hundredthousa
targets is possible with pyrosequencing methods. This has the potential to reduierdrecdi

in diversity detected by both methods but at present such efforts are typocdihed to fewer

samples and not to fully replicated ecological studies.

2.5 Direct analysis of microbial community activity by microarray analysis of ribosomal
RNA (rRNA).
While analysis of DNA by high-density phylogenetic microarrays previd®rmation
regarding relative changes in biomass within a microbial community, eaiah in natural
ecosystems may occur on the order of hours to decades or even millennia (Pheglp8%t)a
Therefore the immediate environmental impacts on microorganisms may agpdrent through
the analysis of DNA turnover rates. As in studies using stable-isotope labb&tthtes such as
13C (see Chapter 4), cellular RNA due to its higher synthesis rates, respodtistrapi
environmental stimuli. For this reason, assaying the more labile RNA molgeuhags
immediate impacts to be monitored independent of replication.

Many standard approaches to sample preparation for RNA analysis negltipde
enzymatic steps to replicate, amplify and label nucleic acid targgtsdeerse transcription, in

vitro transcription or PCR). An advantage of these approaches is the ability tocletzet
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abundance species but the quantitative representation of the original populationatiesede
during enzymatic amplification steps, such as PCR, or by the labeling prodsélirdirect
labeling of RNA on the other hand does not typically require amplification and alsssitetEs
fewer manipulations, leading to a reduction in bias.

Direct labeling of RNA can be accomplished by various means such as base-
incorporation with labeled nucleotides, or chemical modification. We have chosen to use a
recently developed direct-labeling method using T4 RNA ligase to attachiraylated
nucleotide donor molecule to theehd of RNA targets according to the approach of Cole et al
(Cole et al., 2004). This approach results in uniform end-labeling of RNA fragmentsngvoidi
sequence bias inherent in methods which require incorporation of labeled nucleotidgs duri
synthesis (e.g. biotin—dUTP). End-labeled RNA produced through this approach c$eot¢ali
have higher target—probe affinity because hybridization is unimpaired byralezules,
whereas methods that either label the nucleic acid strand internally, suohirad iS
(Vanbelkum et al., 1994), or chemically modify a nucleotide (Kelly et al., 2002) salt ire
decreased hybridization efficiency (Cook et al., 1988). As the probes on the Afkyptatiorm
are tethered at the 3’ end , thg8sition of the label will result in increased exposure of the
biotin for more efficient binding by the streptavidin-fluorophore conjugate. Funtiverthe
donor molecule used to label targets with biotin contains biotin moieties tethere®to the
hydroxyl, rather than attached to the nucleobase. This permits multiple badéoutes (3 in
this case) to be tethered sequentially to the donor nucleotide without any argméduction in
ligation efficiency and has the added potential of enhancing overall signaitynterimprove

the detection of lower-abundance/activity taxa.
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Other groups have also been successful with direct microarray-basedarRiNAis. Small
et al. (Small et al., 2001) hybridized total RNA from a soil extract to plsimicroarray and
demonstrated that rRNA could be analyzed without amplification, however they used biot
labeled detector probes rather than direct RNA target labeling. An impbniging in this study
was that fragmentation of the RNA produced greater hybridization spc#ia sensitivity
presumably through reduction of the complex secondary structure inherent in rRNAIlemle
With this in mind, the choice of the most appropriate method for fragmentation musteconsi
compatibility with the labeling procedure. Again, we have chosen to use the dppfdéaale et
al (Cole et al., 2004) by using an enzymatic RNA fragmentation procedure. Theslprecises
RNaselll (a double strand-specific ribonuclease) and shrimp alkaline phasphat
simultaneously perform controlled fragmentation and dephosphorylation of the thiet R
yielding fragments in the range of 20-200 nucleotides. The dephosphorylation stegsanece

because of the requirement of T4 RNA ligase for a 3’-hydroxyl on the RNA targe

2.6 Example application of direct RNA labeling and PhyloChip analysis - Monitoring
bioremediation of uranium contaminated sediments.

A promising strategy for the containment of uranium within contaminatedsitesitu
bioprecipitation. The valency state of uranium in contaminated groundwater andrgedime
U(VI), is soluble and thus capable of transport by advective and diffusive pgecébe
tetravalent form, U(IV) is highly insoluble and therefore has reduced nyobilétal-reducing
bacteria such as those that typically respire iron have been proposed a# effitzikysts for
reductive precipitation of uranium and several laboratory and field studies have datedrtsie

feasibility of this approach (e.g. (Anderson et al., 2003; Brodie et al., 2006; Chalng2605;
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Peacock et al., 2004; Reardon et al., 2004; Wan et al., 2005)). One concern however, is the long-
term stability of the bioreduced U(IV) and recent studies have demonstrateidadon under
anaerobic conditions (Ginder-Vogel et al., 2006; Wan et al., 2005).

In our studies we noted a carbonate-associated re-oxidation of U(IV) and further
experiments were carried out to determine the influence of organic carGyrlgtron donor
concentration on the extent of re-oxidation (Wan et al., 2005). In one set of columns,
concentrations (32mM OC) were retained at the concentration where re-axas first noted
after a period of successful reduction. In another set of columns, initially & 8%t we
increased the concentration to 100mM OC while eliminating OC from a third sgitiofrts
(OmM OC). As hypothesized, uranium re-oxidation increased with increasing @ént@tion
and was correlated with increased carbonate concentrations. Uranium résoxidased in the
columns without OC additions. To examine the impact of changing carbon conoestatithe
microbial community structure we first employed PhyloChip analysiguSNA extracted from
the column sediments. Following amplification of the 16S rRNA gene, array anlabtsieen
the three treatments (0, 32 and 100 mM OC) indicated no significant differencesidhziaion
intensity among the 271 subfamilies detected (of the 842 subfamilies repteserihe array).
Figure 3A shows a comparison by DNA analysis between 0 and 100 mM OC tresatrAethe
point of sampling, columns had been running for almost two years with continuous OC addition,
and most available electron acceptors (oxygen, nitrate, iron, manganese, sadfdtegin
depleted or were of low bioavailability, therefore limitation on microbiglication may have
been due to the limited electron acceptor and not the electron donor. Despite depletion of
electron donors and the re-oxidation of uranium, several genera of metal-redutenbac

including Geobacter andDesulfovibrio were still detected at similar intensities to those detected
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during the reducing phase. We hypothesized that cell-turnover was elacteptor limited but
cellular activity was being maintained through interspecies eleataosfer. To assess this, we
extracted RNA from the sediment samples, gel-purified the 16S rRNA banueinged, labeled
and hybridized the material directly to the PhyloChip without any primensiplifecation steps.
[ insert fig 3 here]
[Figure 3. Comparison of microbial population dynamics under contrasting carbon amendment
conditions using PhyloChip analysis of (A) DNA (PCR amplicons) and (B) RNAdiyhtion.
X and Y axes display probe set intensities in arbitrary units under two carbonamioo
and 0 mM.]

Figure 3B shows a comparative analysis of hybridization intensitieeéetthe 0 mM and
100 mM organic carbon (OC) treatments. Immediately apparent was theareté Geobacter
16S rRNA, indicating continued activity of this proven uranium reducing bacgemais, despite
observed re-oxidation. We also detected 16S rRNA of the methanogenidWgthaisosar cina.
Various methanogens and sulfate reducers (also detected) are known iatesyntrophic
associations with the methanogens acting as biological electron accept@wabsence of
sulfate (Bryant et al., 1977). Other active organisms detected such asttigease
Syntrophobacter andSyntrophus, are specialized in exocellular electron transfer and may also
serve as a sink for electrons in the absence of sulfate or possibly iron. IntsigGieapacter

species may also enter into syntrophic electron transfer associatfomgalto date their

association with methanogens is unclear.

3. GeoChip, A FUNCTIONAL GENE ARRAY

3.1 Design and construction

25



Construction of FGAs faces many challenges in both microarradbteshnologies (Zhou,
2003) and computational software development. First, a retrievalqaksees specific to a
particular functional gene by key words alone is difficult lnseagene/protein names are not
always specific, or they can be differently annotated in diffepegdinisms. On the other hand,
using functionally characterized and known sequences to search databaskg leads to a
large number of hits, and it really depends on the threshold used. Addiifficalties are that
variants of a functional gene are often highly similar, and moghei are homologues;
sequences from uncultured microbes or laboratory clones may nomipéete; and the number
of deposited sequences for each gene continuously increases. Thugrit difficult to select
specific probes for all variants (sequences) of a functional gdreh \eads to a low coverage
for most functional genes. In addition, standardization of oligonucleotide pledgn criteria
and software development is still challenging. FGA oligonucleotidbgs should be capable of
specifically detecting their targets in a complex samg@sg components are not known. In
addition, for data normalization and analysis, FGAs are veryréiftdrom the most commonly
used gene expression arrays, and novel methods are needed. iRitladyera of genomics and
meta-genomics, microbial sequences are daily produced in aytggab terabyte fashion. A
comprehensive FGA must be periodically updated to reflect the latest infmmmat

To address the above challenges, some strategies have beeapevel are in
development. First, functional gene sequences are first retriesiag key words, and then
unrelated sequences are removed by the HMMER program (http:@twumstl.edu/). Second,
functional gene sequences are aligned using a multiple sequgmreeadt (MSA) program after
verification by HMMER. Only the shared regions of the functiorexteg are used for probe

design. Third, experimentally established oligonucleotide desigeriariand a novel software
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tool specifically targeting highly similar sequences aseduto select oligonucleotide probes.
Fourth, to detect both divergent and closely related sequencesgditth and group-specific
probes can be designed.

Details for GeoChip 2.0 design and construction were described l®t Ble (He et al.,
2007). Briefly, the major steps include: (1) Sequences of individual &unattigenes were
retrieved from publicly available databases (e.g. NCBI GakB (2) 50mer oligonucleotides
were designed after the removal of unrelated sequences bsimigouncleotide probe design
software CommOligo (Li et al., 2005) with a new feature for grspeecific probe selection, and
experimentally established oligonucleotide design criteriaetrte., 2005b; Liebich et al., 2006).
Both gene-specific and group-specific probes were designed witbllth&ing criteria: (i) gene-
specific probes with sequence identit§0%, stretch<20 bases, and free energy85 kcal/mol
(Liebich et al., 2006); and (ii) group-specific probes with sequethestity >96%, continuous
stretch length» 35 bases, and free energ¥0 kcal/mol (He et al., 2005b). (3) Oligonucleotide
probes were designed on the basis of all variants (sequencés) sdrme gene. To ensure the
whole array specificity, all designed probes of different gewere verified using the same
design criteria against larger databases, such as NCBI aid. .EM) All verified probes were
commercially synthesized, and spotted on glass slides (e.g. CorttiegsAPS). (5) After
printing, the slides were dried and then UV-cross-linked accordingnémufacturer’s
instructions. It should be kept in mind that since the number of sequentasbases increases
rapidly, it is important to periodically update the FGA databaseischips to reflect the current

status.

3.2 Specificity, sensitivity and quantitative capability
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Specificity is one of most important parameters to ensurehtghtquality microarray data can
be obtained, and it is even more critical for FGA analysis of enwiental samples. Microarray
specificity can be controlled by probe design and hybridization ttonsli Tiquia et al. (Tiquia
et al., 2004) showed that sequences could be differentiated with < 86%tyidehen
hybridizations were at 5Q, and sequences with < 90% identity atG%ising a 50mer FGA
with 763 probes for nitrogen cycling (erS nirK, nifH) and sulfate reduction (e.dsrA/B)
genes. With a 50mer FGA containing 1662 probes for genes involved in aoswtam
degradation, Rhee et al. (Rhee et al., 2004) showed that at hytiwitizanditions of 58C and
50% formamide, the 50mer microarray was able to differentigigesees with < 88% identities.
In addition, Bozdeclet al. (Bozdech et al., 2003) showed that a significant cross-hybriolizati
could occur if a 70mer probe had free energy < -35 kcal/mol. Tdrerebased on sequence
identity, continuous sequence stretches and free energy, we havenexpaty established
probe design criteria (He et al., 2005b; Liebich et al., 2006). Furtheyrttayse criteria have
been implemented in a novel software t&mmOligo, for microarrays probe design (Li et al.,
2005). Our GeoChip was designed using the newly developed softwardha evaluation
results showed only a very small portion of false positives (0.002-0.0048on@ positive

negatives (He et al., 2007). Therefore, a well designed FGA can achieverdbldespecificity.

Sensitivity is a critical parameter, particularly for @ommental studies when biomass is
low or for low-level molecules in individual cells. When cDNA-base@€R-generated probes)
functional gene arrays (FGA) were used, the detection limnif&t(nitrite reductase) genes was
approximately 1 ng of pure gDNA and 25 ng of soil community DNA (Wal.e 2001). When

oligonucleotide arrays with capture and detector probes were usedgeveoupr study
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demonstrated that the detection sensitivityGeobacter chapellel SSU rRNA gene sequences in
soil extracts was approximately 500 ng of total RNA (Smadll.e2001). Recently, studies with
a 50mer FGA showed that the detection limit for some functiomaég could be 5 to 10 ng of
pure gDNA and 50 to 100 ng in a mixture of gDNA from different orgasiRhee et al, 2004,
Tiquia et al, 2004). By taking advantage of the WCGA approach, ther30@# can detect
subnanogram quantities of microbial community DNAs as low as 10 pg €t\al., 2006).
Therefore, the currently available technologies can gegenallain enough nucleic acids for
FGA analysis, although challenges may still remain for tlyesees with low abundances in an
environmental sample.

The quantitative capability of microarray-based technologynistheer central issue for
environmental applications. Several previous studies showed that vetyigear relationships
were obtained between hybridization signal intensity and target DNRNA concentration
from pure cultures, mixed cultures, and environmental samples @hee 2004; Wu et al.,
2006; Wu et al., 2001). Recently we showed that reliable quantificatidd be obtained using
a 50mer FGA with randomly amplified DNAs (Wu et al., 2006), or rangapplied RNAs
(Gao et al., 2007), as targets. Thus, it is expected that E&RAserve as a quantitative tool to

analyze environmental samples.

3.3 Data normalization and analysis

Microarray data normalization is necessary to adjust nmiaypalata for effects that arise from
variations in the microarray technology rather than biologicéérdihces between samples, or
probes on an array. Microarray technology variations may be due to dye lédisgl&fficiency,
different scanning properties and settings, and use of diffeesagents, which can be

systematically corrected. Normalization can be performetiinvid chip and among replicate
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chips. However, a normalization of microarray data needs to conbildéollowing aspects: (i)
what percentage of spots have positive signals on the array torskde since a microarray
normally contains a comprehensive set of probes and some microbmmuciines may be very
simple, or complex; (ii) what spots are used as the control fanal@ation; (iii) the distribution
of signals among positive spots or all spots on the array; (ivhal@mation methods may be
different based on different situations mentioned above. The followiagsimple method for
analyzing digital array data output from image processingvacdt (e.g. ImaGene, BioDiscovery
Inc.). This method includes the following key stepsp@r-quality spots are removed, (ii) the
signal intensity of each spot is normalized by calculating teemmntensity, (iii) spots with low
signal intensities are removed based on the signal-to-noise $iR) ((Wu et al., 2006) and
normally, an SNR of 2.0 is generally used (Verdick et al., 2002),(andor outlier removal, if
any of replicates (slides) has (signal — mean) more thae times the standard deviation, this
replicate is removed. This process continues until no such replicates are identifie

Data analysis is the most difficult task for microarraalgsis of microbial communities.
First, a massive amount of data is generated by microarraigizgbion. Second, although many
methods and software have been developed for microarray datsignahost of them are
focused on the analysis of gene expression data, especially twaoidgearray hybridization,
and they may not be suitable for microarray data analysis. Thictharray data generally have
large variations, and rigorous statistical analysis of such dateeded (He and Zhou, 2008).
Statistical analysis of microarray data is complicatedalBinour ultimate goal is to extract
biological insights from such large data sets to understand micsethiature and function, so

the results should be of biological relevance and statistical significance
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The following statistical approaches are commonly used to analy@®array data: (1)
Scatter plot. This is the simplest way to visualize microarray data. Scaiots can display
signal intensities for a single chip with two-dye hybridi@at or for two chips with one-dye
hybridization. (2)Principal component analysis (PCA). This is an exploratory multivariate
statistical method for simplifying data sets that redubesdimensionality of the variables by
finding new variables, which are independent of each other. A few of the new varighiesly
2-3, are selected to explain the majority of variance in thenafiglata. For microarray data
analysis, genes or experiments can be considered as varididemaln advantage of PCA is
that it identifies outliers in the data or genes that behavereliffly than most of the genes across
a set of experiments. (8luster analysis. One of the most commonly used methods is cluster
analysis. Cluster analysis is used to identify groups of gesres|usters that have similar
profiles. Clusters and the genes within them can be subsequeatiynex for commonalities in
functions and sequences for better understanding of how and whigehaye similarly. Cluster
analysis can help establish functionally related groups ofsgengain insights into structure and
function of a given microbial community. A popular clustering methosd aeveloped by Eisen
et al. (Eisen et al., 1998), and other algorithms were descripéteper et al. (Heyer et al.,
1999), Travazoie and Church (Tavazoie and Church, 1998), andeZabuZhou et al., 2000).
(4) Neural network analysis. Since clustering methods have some serious drawbacks in dealing
with data with a significant amount of noise, a fundamentally @iffenetwork-based approach
has been proposed for microarray data analysis (Herrero et al., P@@HKyo et al., 1999;
Toronen et al., 1999). Unsupervised neural networks, such as self-angamiaps (SOMs), are
a more robust and accurate method for grouping large data Betmdin advantage of SOMs is

that they are robust to noise, and SOMs are also reasonabanthasan be easily scaled up to
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large data sets. One disadvantage of SOMs is that they rgmahsetermined choices about
geometry. In addition, it is very difficult to detect higher-orddationships between clusters of
profiles due to the lack of a tree structure (Herrero et al., 200b).overcome some of the
limitations of SOMs, an unsupervised neural network, termed the gelfiamg tree algorithm
(SOTA), was proposed (Dopazo and Carazo, 1997). This new algorithm conthmes
advantages of hierarchical clustering (tree topology) and hewetvork (accuracy and
robustness) and was used to analyze gene expression data (Herrero et al., 2001).

There are many commercial and free software tools availablgeneral microarray data
analysis. Such tools are as simple as Excel (Microsoftasocomplicated as Matlab (The
MathWorks), and those include R, GeneSpringgil@t Technologies), Genesight
(BisDiscovery, S-Plus [nsightful Corporation) SPSS (SPSS Inc.), SASAS Institute Inc.),
andSAM (Tusher et al., 2001)lt is noted that most currently available tools are focuseith@n
analysis of gene expression data. Therefore, we need to carelfioibse suitable tools for
microarray data analysis. For example, to examine the dioredabetween the differences of
uranium concentrations and those of various functional gene abundances, A& use
implement the Mantel test (He et al., 2007).

Finally, such large data sets need to be simply presented and k@Atognterpreted.
Richness of different gene categories in the community as &whtie studied samples can be
determined from the number of probes that detect their targéti).probes by category (e.g.
nifH) as indicators of individual taxa, Simpson’s diversity index, Shanngarsily index, and
Evenness based on Simpson’s index can be calculated as describedshreiBegon et al.,
1996). To compare different samples, some genes are specificbtedein one sample, and

some in all samples tested. The numbers of those two type of ganbs calculated as unique
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and overlap genes as described previously (Wu et al., 2006). Clugteramg of the most
popular methods to analyze and visualize microarray data. Usingrarchical clustering
algorithm, the relationship between different samples takenfateft times/sites and different
clusters among those samples can be identified. Such anadysibecalso applied to each
gene/category with its variants. The softw&kister can be used for cluster analysis and
TreeView for visualization (Eisen et al., 1998). In addition, the network anabfsmicroarray
data has received significant attention, and such a method magdé¢ousresent and interpret

microarray results.

3. 4 Example applications of functional gene arraysfor microbial community analysis
FGAs have been extensively evaluated with artificial microbomhmunities (He et al., 2007;
Loy et al.,, 2004; Rhee et al., 2004; Steward et al., 2004; Taroncher-Olgegtbat., 2003;
Tiquia et al., 2004; Wu et al.,, 2006; Wu et al., 2001) and applied to inuestigiarobial
communities in natural and contaminated environments (He et al., 200@¢. 8 probes were
designed using functional gene coding sequences, both DNA and RNb& ceed as targets for
measuring gene abundance and gene expression, respectivelyorBhéf&fAs can be used in a
variety of studies, including (but not limiting): (1) detection of functional gendfaorganisms
in a particular environment; (2) linking microbial structures to flamctand (3) estimation of
gene abundance and activity. The GeoChip can be used for analysig efharonmental
sample, including soil, water, sediments, oil fields, deep sea, animal guts, etc.

Here, an example study is presented for using an FGA (with 20@@&r oligonucleotide
probes) to analyze the structure and activity of microbial comresnitigroundwater (Wu et al.,

2006). The Environmental Remediation Science Program (ERSP) dsddrch center (FRC)
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sites are contaminatedth nitrate, uranium, and technetium, as well as some residgahic
compounds. Samples from five wells with different degrees of con&ioin were collected at
such a site in Oak Ridge, TN. Microarray analyses showed thare400 genes had positive
hybridization signals (Tabl@). As expectedithe highest number of genes was detected for
uncontaminatedackground samples (well FW300), while the lowest numbegeoks was
detected for the highly contaminated sample (R@ID10) (Table 2). Simpson's diversiglices
showed that the diversities in thencontaminated background well (FW300) and less
contaminated well (FWO003) were much highiegan those in more heavily contaminateells
(FW021, FWO024, and FWO010), suggesting contaminattsngly affected the microbial
communities (Table 2). Thaoportion of overlapping genes in different samples was consistent
with the contaminant level and geochemistry (Table 2).

Some important genes involved in denitrificati@g., nosZ and nirS), degradation of
organiccontaminants (e.g., dienelactone hydrolase genes), and met@nesige.g., mercuric
reductase gene) were obserue@ll samples (Fig. 5), suggesting that the microbial populations
containing these genes are widespread. Dissimilatory sudfdtesingbacteria are important in
the reduction of uranium from solublé(Vl) to insoluble U(IV). In contrast to the results
describedabove, while some dissimilatory sulfite-reducing organisissAg) were found in all
of the samples (group D), the abundaace presence of most types (groups A, B, and C)
seemed to varyith the origin of the sample (Fig. 5). The above results are censisith 16S
gene phylogenetic analysis, and recent microbial commuedyescing data. Therefore, as a
specific, sensitive and high-throughput tool, the FGA technology j@bta of revealing

biological processes of microbial communities in natural/contaminatecbamental systems.
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The GeoChip 2.0 has also been successfully used in our laboratoryadkingr the
dynamics of metal-reducing bacteria and associated commuiaties in situ bioremediation
studyat the ERSP Oak Ridge FRC (Field Research Centerygiieh is the first time to demonstrate
that uranium can be bioremediated to the concentrations below the BP3Antaximum
contaminant level (MCL) for drinking water (He et al., 2007). In &oldj a FGA has been
recently used to characterize pure isolates, analyze soibratmitrogen and carbon cycles
along a south polar latitudinal gradient (Yergeau et al.,, 2007)intestigate microbial
community structure during bioremediation of a hydrocarbon-contéadinaquifer, and to
identify active members in a stable isotope experiment fedlabigled biphenyl. The GeoChip
2.0 has also been used to examine the gene-area relationshipaffimhicommunities in soils,
and the results suggest that a forest soil microbial commuriitpieed a relatively flat gene—
area relationship, but the z (z is a measurement of the raf@eoies turnover across space in a
power-law relationship: S = ¢Awhere S is the number of species, A is the area, and c is the
intercept in log-log space) values varied considerably acroderatit functional and
phylogenetic groups (Zhou et al., 2008). All resulting data frometsagdies indicate that the
functional gene array technology is a powerful tool for studyingahial communities in the

environment.

4. CONCLUDING REMARKS

We are entering a new era in environmental microbiology where we are begmuinderstand
some of the complex and interdependent relationships among prokaryotes in natural
communities. Starting with an acid mine drainage (AMD) community (Tyson et al., 2004)

working up in complexity to the Sargasso Sea (Venter et al., 2004) and a Minnasataifa
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(Tringe et al., 2005), shotgun microbial community sequencing (metagenomiacegidas
implicated taxa and specific genes that contribute to the overall cellytaates and other
important functions of a microbial community (See Chapter x). Phylogenetisauch as the
PhyloChip that target the known diversity within bacteria and archaea areantgort
determining the composition of microbial communities in a number of different en\araam
and conditions. Functional gene arrays such as the GeoChip are important for identifyin
physiological activities involved in certain biogeochemical processes.

The development and application of microarray technology for envinstainstudies has
received a great deal of attention. Because of its high-dearsityigh-throughput capacity, it is
expected that such a technology will revolutionize the analysemiafobial community
structure, function and dynamics. Current studies showed that maydaanhnology is able to
provide specific, sensitive, and potentially quantitative analysisiabbial communities from a
variety of natural environments. It is also useful for providingaflitenkages of microbial
genes/populations to ecosystem processes and functions. Unlike miyramd$ime consuming
methods such as metagenomic, or 16S clone library sequencing, naigsoatlow high
throughput sampling so that multiple replications and multiple nresats can be examined.
Identifying the population dynamics of specific taxonomic groupsesponse to defined
conditions is the first step towards understanding how they may loatetrio the overall
microbial community structure.

However, more rigorous and systematic assessment and developeeeeded to realize
the full potential of microarrays for microbial ecology studi®sveral key issues need to be
addressed, including novel experimental designs and strategiesirfonizing inherent high

hybridization variations to improve FGA-based quantitative accuracyel approaches for

36



increasing hybridization sensitivity to detect extremely lmemass in natural environments,
novel computational tools for microarray data interpretation, and brotjyration and
application of microarray technologies with environmental stutbeaddress ecological and
environmental questions and hypotheses. Therefore, the future focilises wot only on
microarray technology and applications, but also on microarraydelatata analysis,
interpretation and modeling. First, novel strategies and approachegfmental controls and
design are needed to ensure that microarray hybridization data different samples are
comparable, interpretable and biologically significant becausthefinherent variability in
microarray hybridization signals. Second, automatic bioinformaticcangputational tools are
necessary to retrieve gene sequences, design oligonucleotide prob&sictaasabases, and
update sequence, probe and array information. In addition, more advautematic
mathematical and statistical approaches, such as multivamnatysis, time-series analysis,
neural network, artificial intelligence, and differential equatiasddl modeling, should be
extremely useful for rapid pattern recognition, visualization, datang, cellular modeling,

simulation and prediction.

Acknowledgment
We would like to acknowledge funding support from the Director, Offic&saénce,
Office of Biological and Environmental Research, Environmental digsion Sciences

Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

37



Table 1. List of major functional markers on the GeoChip 2.0

Gene category Example of key enzyme (gene) Total_probe#
Nitrogen cycling 5310
Nitrogen fixation NitrogenasanifH) 1225
Denitrification Nitrate reductasendrG, napA, nasA), nitrite reductas¢ 2306
(nirS, nirK), nitric oxide reductasen¢rB), nitrous oxide
reductasen(0osZ)
Nitrification Ammonium monooxygenasearfioh), hydroxylamine| 347
oxidoreductaseh@o)
Nitrogen mineralization UreasargC), glutamate dehydrogenasgil) 1432
Carbon cycling 4599
Carbon fixation RubiscacbbL, rbcl), Acl (aclB), CODH, FTHFS 1018
Cellulose degradation Cellulase, endoglucanase 1285
Lignin degradation Laccase, mannanase 513
Chitin degradation EndochitinasehiA), exochitinase 744
Methane production Methyl coenzyme M reductase 4) 437
Methane oxidation Methane monooxygengsecd) 336
Others Lignin peroxidasel{p), pectinase, cellobiase 266
Sulfate reduction 1615
Sulfite reductasedérA/B), APS @psA) 1615
Phosphor us utilization 145
Exopolyphosphatasg(fx), phytase 145
Metal reduction and resistance 4546
Arsenic resistance Arsenate reductase (aassB, arsC) 877
Cadmium resistance Cadmium transportad4, cadB, cadC) 282
Chromium resistance Chromium/chromate transpocteAj 319
Mercury resistance/reduction Mercuric ion redudtagasporterrper, merA, merB) 548
Nickel resistance Nickel transportec¢A), permeasenfeB) 140
Zinc resistance Zinc resistance proteantA) 128
Other metal resistance/reduction cobalt resistpnoeins, selenium reductase, etc. 2252
Contaminant degradation 8028
Benzene, toluene, ethylbenzene, arlBenzene  1,2-dioxygenase bef)), ethylbenzend
xylene (BTEX) & related aromatic$ dehydrogenaseelfd), benzylsuccinate synthaséss),
xylene monooxygenasexf{), benzoyl-CoA reductase
(bad), and catechol 1,2-dioxygenasait( tfd). 4176
Chlorinated aromatics Chlorophenol reductive defpathasedpr) 90
Nitroaromatics Nitrobenzene nitroreductasabg), 4-nitrobenzaldehydg¢
dehydrogenasan), p-nitrobenzoate reductagmb) 152
Polycyclic aromatic hydrocarborjsNaphthalene  dioxygenase nah), PAH  ring-
(PAHSs) hydroxylating dioxygenasedo) 741
Polychlorinated biphenyls (PCBs) Biphenyl dioxygss#ph) 388
Chlorinated solvents (e.g. PCE) PCE/TCE reducteleatbgenase @h, pceA, tecA) 232
Other organic  compounds/by-Alkane hydroxylase d&k), homogentisate 1,2-
products dioxygenasehmg), vanillate O-demethylase oxygengse
(van), etc. 2249
Total 19959 24243
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